当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械**位置数据丢失了,或者机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,我们对了解参考点的工作原理十分必要。 参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。为了使电气原点和机械原点重合,将使用一个参数进行设置,这个重合的点就是机床原点。 机床配备的位置检测系统一般有相对位置检测系统和**位置检测系统。相对位置检测系统由于在关机后位置数据丢失,在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。**位置检测系统在电源切断时也能检测机械的移动量,机床每次开机后不需要进行原点回归。由于在关机后位置数据不会丢失,并且**位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的**位置核对,具有很高的可信性。当更换**位置检测器或**位置丢失时,应设定参考点,**位置检测系统一般使用无挡块式零点回归。 一: 使用相对位置检测系统的参考点回归方式: 1、发那克系统: 1)、工作原理: 当手动或自动回机床参考点时,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。当挡块离开参考点接近开关时,继续以FL速度移动。当走到相对编码器的零位时,回归电机停止,并将此零点作为机床的参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391 各轴的参考计数器容量18210570~0575 75707571 每轴的栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用**脉冲编码器作为位置检测器: 0. 不是 、1. 是 1815.50021 7021 **脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 3)、设定方法: a、 设定参数: 所有轴返回参考点的方式=0; 各轴返回参考点的方式=0; 各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定; 是否使用**脉冲编码器作为位置检测器=0 ; **脉冲编码器原点位置的设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。 b、 机床重启,回参考点。 c、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。 4)、故障举例: 一台0i-B机床X轴手动回参考点时出现90号报警(返回参考点位置异常)。 a、机床再回一次参考点,观察X轴移动情况,发现刚开始时X轴不是快速移动,速度很慢; b、检测诊断号#300,<128; d、 检查手动快速进给参数1424,设定正确; e、 检查倍率开关ROV1、ROV2信号,发现倍率开关坏,更换后机床正常。 2、三菱系统: 1)工作原理: 机床电源接通后第一次回归参考点,机械快速移动,当参考点检测开关接近参考点挡块时,机械减速并停止。机械通过参考点挡块后,缓慢移动到第一个栅格点的位置,这个点就是参考点。在回参考点前,如果设定了参考点偏移参数,机械到达第一个栅格点后继续向前移动,移动到偏移量的点,并把这个点作为参考点。 2)、相关参数: 参数内容 系统M60 M64 快速进给速度2025 慢行速度2026 参考点偏移量2027 栅罩量2028 栅间隔2029 参考点回归方向2030 3)、设定方法: a、设定参数: 参考点偏移量=0 栅罩量=0 栅间隔=滚珠导螺快速进给速度、慢行速度、参考点回归方向依实际情况进行设定。 b、重启电源,回参考点。 C、在|报警/诊断|→|伺服|→|伺服监视(2)|,计下栅间隔和栅格量的值。 d、计算栅罩量: 当栅间隔/2<栅格量时,栅罩量=栅格量-栅间隔/2 当栅间隔/2>栅格量时,栅罩量=栅格量+栅间隔/2 e、把计算值设定到栅罩量参数中。 f、重启电源,回参考点。 g、重复c、d过程,检查栅罩量设定值是否正确,否则重新设定。 h、根据需要,设定参考点偏移量。 4)、故障举例: 一台三菱M64系统钻削中心,Z轴回参考点时发生过行程报警。 a、 检查参考点检测开关信号,当移动到参考点挡块位置时,能够从“0”变为“1”; b、 检查栅罩量参数(2028),正常; 检查参考点偏移量参数(2027),正常; 检查参考点回归方向参数(2030),和其它同型号机床核对,发现由反方向“1”变成了同方向“0”,改正后,重启回参考点,正常。 3、西门子系统: 1)、工作原理: 机床回参考点时,回归轴以Vc速度快速向参考点文件块位置移动,当参考点开关碰上挡块后,开始减速并停止,反方向移动,退出参考点挡块位置,并以Vm速度移动,寻找到第一个零脉冲时,再以Vp速度移动Rv参考点偏移距离后停止,就把这个点作为 2)、相关参数: 参数内容 系统802D/810D/840D
返回参考点方向MD34010 寻找参考点开关速度(Vc)MD34020 寻找零脉冲速度(Vm)MD34040 寻找零脉冲方向MD34050 定位速度(Vp)MD34070 参考点偏移(Rv)MD34080 参考点设定位置(Rk)MD34100 3、设定方法: a、设定参数: 返回参考点方向参数、寻找零脉冲方向参数根据挡块安装方向等进行设定; 寻找参考点开关速度(Vc)参数设定时,要求在该速度下碰到挡块后减速到“0”时,坐标轴能停止在挡块上,不要冲过挡块; 参考点偏移(Rv)参数=0 b、机床重启,回参考点。 C、由于机床参考点与设定前不同,重新调整参考点偏移(Rv)参数。 4、故障举例: 一台西门子810D系统,机床每次参考点返回位置都不一致,从以下几项逐步进行排查: a、 伺服模块控制信号接触不良; b、电机与机械联轴节松动; C、参数点开关或挡块松动; d、参数设置不正确; е、位置编码器供电电压不低于4.8V; f、位置编码器有故障; g、位置编码器回馈线有干扰; *后查到参考点挡块松动,拧紧螺丝后,重新试机,故障排除。 二: **位置检测系统: 1. 发那克系统: 1)、工作原理:**位置检测系统参考点回归比较简单,只要在参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻找到第一个栅格点后,就把这个点设置为参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391 各轴的参考计数器容量18210570~0575 75707571 每轴的栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用**脉冲编码器作为位置检测器: 0. 不是 、1. 是 1815.50021 7021 **脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 返回参考点间隙初始方向 0. 正 1. 负10060003 7003 0066 3)、设置方法: a、设定参数: 所有轴返回参考点的方式=0; 各轴返回参考点的方式=0; 各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定; 是否使用**脉冲编码器作为位置检测器=0 ; **脉冲编码器原点位置的设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定; b、机床重启,手动回到参考点附近; c、是否使用**脉冲编码器作为位置检测器=1 ; **脉冲编码器原点位置的设定=1; e、机床重启; f、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。 2、三菱系统(M60、M64为例): 1)、无挡块机械碰压方式: a、设定参数: #2049.= 1 无檔块机械碰压方式; #2054 电流极限; b、选择“**位置设定”画面,选择手轮或寸动模式,(也可选择自动初期化模式); C、在“**位置设定”画面,选择“可碰压”; d、#0**位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点的坐标值; e、移动控制轴,当控制轴碰压上机械挡块,在给定时间内达到极限电流时,控制轴停止并反方向移动。如果b步选择手轮或寸动模式,则控制轴反方向移动移动到第一栅格点,这个点就是电气参考点;如果b步选择“自动初期化”模式,则在第a步还要设置#2005碰压速度参数和 #2056接近点值,此时控制轴反方向以 #2005(碰压速度)移动到 #2056(接近点)值停止,再以#2055(碰压速度)向挡块移动,在给定时间内达到极限电流时,控制轴停止并以反方向移动到第一栅格点,这个点就是电气参考点; #p#分页标题#e# g、重启电源。 2)、无挡块参考点方式调整: a、设定参数: #2049 = 2 无挡块参考点调整方式; #2050 = 0 正方向、 = 1 负方向; b、选择“**位置设定”画面,选择手轮或寸动模式; c、在“**位置设定”画面,选择“无碰压”方式; d、#0**位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点的坐标值; e、把控制轴移动到参考点附近。 f、#1 = 1,控制轴以 #2050设置方向移动,达到第一个栅格点时停止,把这个点设定为电气参考点。 g、重启电源。 3、 西门子系统(802D、810D、840D为例): 1)、调试; a、设置参数: MD34200=0.**编码器位置设定; MD34210=0.**编码器初始状态; b、选择“手动”模式,将控制轴移动到参考点附近; c、输入参数:MD34100,机床坐标位置; d、激活**编码器的调整功能:MD34210=1.**编码器调整状态; e、按机床复位键,使机床参数生效; f、机床回归参考点; g、机床不移动,系统自动设置参数:34090. 参考点偏移量;34210.**编码器设定完毕状态,屏幕上显示位置是MD34100设定位置。 2)、相关参数: 参数内容 系统 802D. 810D. 840D 参数点偏移量34090 机床坐标位置34100 **编码器位置设定34200 **编码器初始状态; 0.初始 1.调整2.设定完成 34210 在相对位置检测系统的参考点回归中,机床第一次参考点回归后,执行手动参考点回归或加工程序的G28指令时机械移动到参考点挡块位置并不减速,而是继续高速定位到事先存在内存中的参考点。机床下载PCL程序时将导致参考点位置丢失,在PCL调试完毕后,再调试**值编码器参考点回归设定。 |